A Quantum Bayesian-Adapted Model for Assessing Environmental Impacts of the Global Economy
By Avni, Megan
Rapid globalisation in the past decade has led growth in trade to quickly outpace growth in real-adjusted gross domestic product (GDP) across the globe. As such, the impact of a nation’s consumption has aggravated by an unprecedented magnitude; value chains of most products span many countries with rising pressures of economic activity on global ecosystems constituting a growing need for effective policy. Measurements for quantifying and analysing the scale of environmental shocks across trade networks have largely focused on embedded emissions, which in this project will be represented in a multi-regional input-output model (MRIO), extended with environmental coefficients to appraise corresponding value chains. Ultimately, with the usage of both a Bayesian probability and quantum-agent based model, we wish to provide a simulated pseudo-economy for which environmental effects (embodied CO2) can be appropriately measured for various scenarios. Building upon previous mathematical foundations provided by IAM modeling, this project aims to provide empirical support for global policies to push for the sustainable management of supply chains, as well as in the emerging field of quantum economics.