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We propose a quantum harmonic oscillator as a model for the market force which draws a stock return
from short-run fluctuations to the long-run equilibrium. Analyzing the Financial Times Stock Exchange
(FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process
models, e.g., geometric Brownian motion and the Heston model, with smaller fitting errors and better
goodness of fit statistics. The solution of the Schrödinger equation for the quantum harmonic oscillator
shows that stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian
features of the stock return distribution. In addition, we provide an economic rationale of the physics
concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship
between finance and econophysics literature.
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1. Introduction

In recent years extensive research has been devoted to investigating stock return distributions
for asset pricing, risk management, and asset allocation purposes. One important model of stock
price evolution is the geometric Brownian motion (GBM), which assumes that the logarithm of
a stock price follows a Brownian motion with drift and results in a Gaussian distribution for log
stock returns. However, empirical evidence illustrates that the distribution of stock returns has
non-Gaussian properties including negative skewness and positive excess kurtosis (Ataullah et al.
2009). To describe the characteristics of stock return distribution better, there have been proposed
many models such as the variance gamma model (Madan and Seneta 1990), Laplace distribution
model (Linden 2001), and Heston model (Drǎgulescu and Yakovenko 2002).

As an alternative to traditional stock return models, an increasing number of quantum models
have also been applied to study stochastic dynamics of stock prices (Ye and Huang 2008, Ataullah et
al. 2009, Zhang and Huang 2010, Pedram 2012, Cotfas 2013, Meng et al. 2014, 2015). Some of these
studies successfully capture non-Gaussian properties of the stock return distribution: For instance,
Ataullah et al. (2009) regarded stock returns as a particle evolving in a finite square potential
well and Meng et al. (2014) analyzed the Chinese stock index by means of quantum Brownian
motion. The advantage of such quantum models over the traditional stock return models lies in the
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incorporation of market conditions on the stock returns, which is captured by the potential term
in the Hamiltonian. Given these features of quantum models, however, few provide the rationale
of choosing potential wells and the economic explanation of physics concepts.

Besides deviations from the Gaussian distribution, another consensus on stock return behavior
is that relatively high or low stock returns will dissipate as investors exploit excess profits. This
implies that there exists a market force which draws a stock return from short-run fluctuations
to long-run equilibrium, which is supported by the evidence of mean reversion in stock returns
(Balvers et al. 2000). Among potentials in quantum models, we consider the harmonic potential to
which any potential approximates near the equilibrium captures this market force. Specifically, the
harmonic potential determines a location-dependent drift term in the stochastic process, meaning
that the restoring force to the equilibrium is proportional to the displacement. Consequently, our
model provides a revisit to the Ornstein-Uhlenbeck (OU) process in the quantum context. We
then solve the Fokker-Planck (FP) equation for the probability density function (PDF) of stock
returns. The solution is a linear combination of the eigenfunctions of the Hamiltonian. Our model
outperforms the traditional models, such as GBM and the Heston model, in fitting the empirical
distribution of FTSE All Share Index returns.

Some studies investigate derivative pricing applying eigenfunction expansion (Davydov and Linet-
sky 2003, Boyarchenko and Levendorskǐı 2007). For instance, Davydov and Linetsky (2003) un-
bundle contingent claim into portfolios of primitive securities called eigensecurities. The pricing
problem reduces to the regular Sturm-Liouville (SL) problem, and the solutions to such a problem
form a complete orthonormal basis in the Hilbert space. In this paper, we present the application
of eigenfunction expansion in a physics framework. By introducing a quantum harmonic oscillator,
our FP equation can be converted to a time-independent Schrödinger equation, which plays the
similar role of SL equation in Davydov and Linetsky (2003). Furthermore, unlike Davydov and
Linetsky (2003) who simply use eigenfunctions as a mathematical tool, we provide an interpre-
tation of the eigenspectrum in economics and finance contexts. For example, eigenstates can be
regarded as different uncertainty regimes in finance, and the eigenenergies of each state as the
degree of investors’ collective trading activities, i.e., the pressure on stock prices. The difference
in eigenenergies between two states is the barrier for the stock to overcome and to transmit to
higher uncertainty regimes. We also explain the relationship among holding periods, speed of price
adjustment, and return volatility in line with finance literature. These economic implications could
help us gain a deeper insight into the essentials of stock return behavior.

This paper consists of five sections: In section 2 we propose the quantum harmonic oscillator
model. Section 3 presents the methodology and data. In section 4 we mainly explain economic im-
plications of the physics concept. Finally, section 5 concludes the paper. Two traditional stochastic
models are discussed in the Appendix.

2. Quantum harmonic oscillator

Let us consider a standard Wiener process Wt and the following stochastic differential equation

dx = v(x, t)dt+ σ(x, t)dWt. (1)

Introducing the PDF ρ(x, t) of the random variable x at time t, we obtain the FP equation from
Eq. (1):

∂

∂t
ρ(x, t) =

∂2

∂x2
[D(x, t)ρ(x, t)] +

∂

∂x

[
ρ(x, t)

∂V (x, t)

∂x

]
, (2)

where D(x, t) ≡ σ2(x, t)/2 is the diffusion coefficient and V (x, t) is the external potential deter-
mining the drift term according to v(x, t) ≡ −∂V (x, t)/∂x. In the simple case of constant D and
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time-independent potential V (x), Eq. (2) can be expressed in terms of the FP operator:

∂

∂t
ρ(x, t) =

[
∂2V

∂x2
+
∂V

∂x

∂

∂x
+D

∂2

∂x2

]
ρ(x, t) ≡ L̂ρ(x, t). (3)

Note that the operator L̂ is non-hermitian because of the first derivative. This can be remedied by
transforming the FP equation in Eq. (3) to a Schrödinger equation with a hermitian Hamiltonian.
To achieve this, we introduce a new function (Petroni et al. 1998):

φ(x, t) ≡ ρ(x, t)√
ρs(x)

,

where ρs(x) is the stationary solution of Eq. (2) (Putz 2016):

ρs(x) =
1

C
e−V (x)/D (4)

with the normalization constant C ≡
∫ +∞
−∞ dx e−V (x)/D. Then the FP operator in Eq. (3) leads to

L̂ρ(x, t) = −
√
ρs(x)Ĥφ(x, t), where the hermitian Hamiltonian operator Ĥ is given by

Ĥ = −1

2

∂2V

∂x2
+

1

4D

(
∂V

∂x

)2

−D ∂2

∂x2
.

The FP equation is now expressed as the time-dependent Schrödinger equation in imaginary
time τ = −i~t:

i~
∂

∂τ
φ(x, τ) = Ĥφ(x, τ) = − ~2

2m

∂2

∂x2
φ(x, τ) + U(x)φ(x, τ) (5)

with the mass m ≡ ~2/2D and effective potential (Krylov 2002)

U(x) ≡ −1

2

∂2V (x)

∂x2
+

1

4D

[
∂V (x)

∂x

]2

.

The general solution of Eq. (5) takes the form

φ(x, τ) =

∞∑
n=0

Anφn(x) exp

(
− i
~
Enτ

)
,

where An is the amplitude of the (normalized) solution φn(x) of the time-independent Schrödinger

equation: Ĥφn(x) = Enφn(x) with eigenenergy En. The solution of the FP equation thus reads

ρ(x, t) =
√
ρs(x)

∞∑
n=0

Anφn(x) exp (−Ent) ,

where the amplitude is determined by the initial PDF ρ(x, 0) according to

An =

∫ ∞
−∞

dxφ∗n(x)[ρs(x)]−1/2ρ(x, 0).
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Note that Eq. (5) describes the dynamics of a particle of mass m in the potential U(x). The
Taylor expansion of U(x) around the equilibrium point x0, defined by dU/dx|x0

= 0, reads

U(x) =

∞∑
n=0

1

n!

dnU

dxn

∣∣∣∣
x0

(x− x0)n.

In case that deviations from the equilibrium are small, we may neglect terms of higher-order in
x− x0 and write

U(x) = U(0) +
1

2
kx2 (6)

with k ≡ d2U/dx2|0, where we have taken x0 ≡ 0 without loss of generality. In this way, U(x) is
described by a harmonic potential and the system reduces to a harmonic oscillator.

Classically, F ≡ −dU/dx = −kx corresponds to the restoring force, which pushes the particle

out of the equilibrium position back to the equilibrium one. Further, ω ≡
√
k/m gives the angular

frequency of the harmonic oscillator. A higher value of ω leads to faster adjustment to the long-run
equilibrium from short-run fluctuations. Here the mass m represents the firm-specific characteristics
that determine the speed of price adjustment, such as the market capitalization and trading volumes
(Meng et al. 2015, Zhang and Huang 2010, Chordia and Swaminathan 2000). In consequence,
under common market conditions described by k, different speeds of price adjustment can be
observed across firms (Damodaran 1993). It is of interest that in classical mechanics, the particle
position is given by a deterministic function of time t, governed by Newton’s law of motion; this is
analogous to the behavior of stock prices with zero volatility that yields a deterministic trajectory.
In reality, however, stock price evolution appears indeed random. Such randomness can conveniently
be taken into account by quantum noise inherent in the formulation of quantum mechanics and the
probabilistic description based on quantum mechanics is useful to probe the “random evolution”
of stock prices.

We thus consider small deviations from the equilibrium and resort to the quantum harmonic
oscillator, which is described by Eq. (5) with the effective potential in the form of Eq. (6). Specifi-
cally, taking the harmonic potential V (x) = γx2, we obtain the effective potential in the harmonic
form as well:

U(x) = −γ +
1

2
mω2x2

with γ = ω
√
mD/2. It is well known that the nth eigenfunction of the harmonic oscillator is given

by

φn(x) =
1√

2nn!

(mω
π~

)1/4
Hn

(√
mω

~
x

)
exp

(
−mω

2~
x2
)

with the corresponding eigenenergy

En =

(
n+

1

2

)
~ω − γ = n~ω,

where Hn is the nth Hermite polynomial.1 A few low-lying eigenfunctions φn(x) for n ≤ 5 are
shown in Figure 1.

1The first few Hermite polynomials are given by H0(u) = 1, H1(u) = 2u, H2(u) = 4u2 − 2, H3(u) = 8u3 − 12u, etc.
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Figure 1. Low-lying eigenfunctions of a quantum harmonic oscillator

With Eq. (4) given by

ρs(x) =

√
mω

π~
exp

(
−mω

~
x2
)
,

we finally obtain the solution of the FP equation

ρ(x, t) =

∞∑
n=0

An√
2nn!

√
mω

π~
exp(−Ent)Hn

(√
mω

~
x

)
exp

(
−mω

~
x2
)
. (7)

Note that this solution takes the form of a mixed χ distribution:

ρ(x, t) =

∞∑
n=0

Cn(t) ρn(x) (8)

with Cn(t) = (An/
√

2nn!)
√
mω/π~ e−Ent and ρn(x) = Hn(

√
mω/~x)e−(mω/~)x2

. For exam-

ple, we have ρ0(x) ∝ f(
√

2mω/~x; 1), ρ1(x) ∝ f(
√

2mω/~x; 2), ρ2(x) ∝ f(
√

2mω/~x; 3) −
f(
√

2mω/~x; 1), etc. with f(x; k) = 21−k/2

Γ(k/2) x
k−1 e−x

2/2, where k is the degree of freedom and Γ(z)

is the Gamma function.
Since En = n~ω, terms of n ≥ 1 in the summation of Eqs. (7) or (8) decays exponentially with

time t. In particular, in the limit t→∞, only the ground-state (n = 0) term survives. As a result,
the initial memory gets lost and returns follow, regardless of the initial distribution, exactly the
Gaussian distribution, in which case the model reduces to GBM for the price process. At finite
time t, on the other hand, the incorporation of excited states (n ≥ 1) increases thickness of the tail,
displaying leptokurtic. The mixture of even and odd states leads to asymmetry of the distribution,
which captures skewness. Therefore the excited states serve to capture the stylized facts of stock
returns, i.e., skewness and kurtosis. Note here that except at very short time t, higher-order terms
become very small. We thus need to consider only a few eigenstates of small n, which makes it
feasible to manage Eq. (7) for the fitting purpose.

5



3. Empirical analysis

3.1. Data

We calibrate the models using the daily FTSE All Share Index from 15 November, 2007 to 21
September, 2014. This period is of interest, as it covers the global financial crisis, the European
sovereign debt crisis, and post-recession periods. The data have been collected from the Bloomberg
database. The daily, weekly, and monthly continuously compounded returns

Rannt =
252.5

τ
ln

(
St+τ
St

)
are annualized for τ = 1, 5 and 20 trading days, respectively.

Table 1 summarizes the statistics of stock returns, which are leptokurtic with negative skewness.
It is thus manifested that returns do not follow a Gaussian distribution.

Table 1. Summary statistics of stock returns for different holding periods (τ)

τ No. of obs. Mean Std. Skewness Excess kurtosis

1 1746 0.0508 3.3070 −0.1540 7.0114
5 1742 0.0549 1.3824 −0.6503 5.6287
20 1727 0.0534 0.6545 −1.2350 4.0501

3.2. Estimation

We estimate the parameters of the quantum model by minimizing the Cramér-von Mises goodness
of fit statistic (Ataullah et al. 2009):

T3(Θ) =
1

12M
+

M∑
j=1

[
F (rj ;Θ)− j − 1/2

M

]2

,

where rj ≡ Rj − R̄ is the jth ordered centered return with R̄ being the historical average return
used as a proxy for the long-run equilibrium, M is the total number of observations and F (rj ;Θ)
is the accumulated area under the probability density below the jth ordered centered return for
given parameter set Θ.

As remarked in section 2, the amplitudes of the 6th and higher eigenstates are rather small
and negligible. We thus consider only the first five eigenstates (0 ≤ n ≤ 4). There are in total
six undetermined parameters, which are the amplitudes of five eigenstates, Cn for n = 0, 1, 2, 3,
and 4, and an additional one mω appearing as a whole in the PDF given by Eq. (8). These six
parameters are subject to one constraint, which is the normalization condition for ρ(x). Table 2
gives the Cramér-von Mises goodness of fit statistic T3. The null hypothesis of the Cramér-von
goodness of fit test is that data come from given distribution F . If T3 is larger than the tabulated
critical value, the null hypothesis can be rejected.

We also estimate the parameters of GBM and the Heston model (see Appendix). Estimated
parameters are presented in Table 3.

To compare the fitting results, we use the Cramér goodness of fit statistic, which is calculated in
the following way: First, we determine the 5th, 10th, and up to 100th percentiles of returns. We
then find the actual number N5i of empirical returns, falling between the 5(i−1)th and the 5ith
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Table 2. Cramér-von Mises goodness of fit statistics

τ T3

1 0.0440
5 0.0343
20 0.0377

Critical value (1%) 0.7435
Critical value (5%) 0.4614
Critical value (10%) 0.3473

Table 3. Parameter estimates

Models Parameters
τ

1 5 20

GBM
µ 0.0704 0.0738 0.0703
σ2 0.0433 0.0378 0.0339

Heston θ 1.558×10−4 1.513×10−4 1.383×10−4

Quantum

C0 0.1708 0.3658 0.7506
C1 0.0035 0.0157 0.0646
C2 0.0208 0.0299 0.0517
C3 −0.0021 −0.0086 −0.0361
C4 0.0047 0.0064 0.0096
mω 9.666×10−36 4.434×10−35 1.866×10−34

percentiles, and evaluate

T0 =

20∑
i=1

(N5i − E5i)
2

E5i
,

where E5i is the expected number of returns falling between the 5(i−1)th and 5ith percentiles
under the distribution F . The goodness of fit statistic T0 is asymptotically distributed as a χ2

variate with (n−k−1) degrees of freedom, where n is the number of percentiles and k the number
of parameters estimated from the data.

The null hypothesis of the Cramér goodness of fit test is that data come from the distribution
F . If T0 is larger than the critical value, the null hypothesis can be rejected. Note that the degree
of freedom is 17 for GBM, 18 for the Heston model, and 14 for our quantum model.2

Table 4. Cramér goodness of fit tests

τ GBM p-value Heston p-value Quantum p-value

1 236.96 0.0000 43.35 0.0007 22.82 0.0633
5 138.05 0.0000 57.95 0.0004 15.63 0.3362
20 186.76 0.0000 148.79 0.0000 20.99 0.1090

According to Table 4, we reject the null hypothesis that the data come from the distribution of
GBM or the Heston model since all the p-values are smaller than 0.01. In case of the quantum
harmonic oscillator, the p-value of daily data is larger than 0.05 while the p-values of weekly and
monthly data are well above 0.1. Thus one may not reject the null hypothesis that data come from
the distribution of the quantum harmonic oscillator model.

2There are six parameters in the quantum model. However, since they should satisfy one constraint, the number of free

parameters reduces to five.
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4. Discussion

We plot in Figure 2 the fitted PDF of each model along with the empirical distribution, and in
Figure 3 the fitting error of each model. They demonstrate that our quantum model results in the
smallest fitting errors, thus visually confirming that our model provides a more adequate description
of the empirical distribution. Specifically, GBM severely understates and overstates the probability
density of log returns around zero and in the moderate positive and negative ranges, respectively;
the Heston model exaggerates the probability density of small positive or negative returns, and
this exaggeration becomes worse as the holding period increases. In contrast, the fitting error of
the quantum model remains small in any range of log returns and is affected little by the holding
period. Together with the goodness of fit statistics shown in Table 4, we conclude that the quantum
approach outperforms the traditional stock return models.
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Figure 2. PDF of log returns x in GBM (blue), the Heston model (black), and our quantum model (red), for the
holding period τ = (a) 1, (b) 5, and (c) 20. The empirical data are also plotted (histogram).

The sources of such good fit are (i) the incorporation of the market uncertainty, which was
modeled purely as a random walk in the traditional stock return models, through the properties of
wave functions and (ii) the consideration of the market force which draws short-run fluctuations
to the long-run equilibrium through the quantum harmonic oscillator.
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Figure 3. Residual plots corresponding to Figure 2.

As addressed in section 2, the solution of the Schrödinger equation is expressed as a linear
combination of eigenfunctions corresponding to discrete eigenstates. Eigenstates are associated
with a set of discrete values of physical quantities, such as energy levels. For the nth eigenstate,
the energy En and variance σ2

n are given by linear functions of the quantum number n: En = n~ω
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and σ2
n = (2n+1)(~/2mω). The most stable eigenstate is the ground state (n = 0), with the lowest

energy and variance. In order for a particle to transit to an excited state at a higher energy level,
it must absorb energy enough to make a quantum jump to that excited state, which also has a
larger variance.

If we interpret the variance of the quantum state as the level of market uncertainty, i.e., the
stock market volatility, and the energy as the degree of investors’ collective trading activities, i.e.,
the pressure on stock prices, then the quantum model is commensurate with the study in existing
finance literature. For instance, it was argued that accumulated price pressure exceeding some
threshold can induce large price movements and that the stock market volatility could exhibit a
quantum change (Abreu and Brunnermeier 2003), which is consistent with the properties of the
quantum model. In particular, higher market uncertainty corresponds to a higher energy level.
Therefore the market tends to limit high volatility by putting a high energy threshold on it.

Note that the probability for the particle in an eigenstate is proportional to the square of the
amplitude of that eigenstate. Accordingly, Pn ≡ N−1|Cn|2 with the normalization factor N ≡∑4

k=0 |Ck|2 represents the probability of a stock return residing in the nth eigenstate. Table 5
presents the probability Pn computed for n = 0 to 4. It is shown that the ground state (n = 0),
following the Gaussian distribution, has a probability higher than 90 percent regardless of the
holding period. This indicates that the stock market tends to be bounded mostly at the smallest
uncertainty level. In other words, it has a small possibility to be in the eigenstates with higher
volatility, which is compatible with the stylized fact that there is an equilibrium level to which
volatility will eventually return in the long run (Engle and Patton 2001).

Although the ground state takes the largest probability, we still observe nuances of probabilities
across different holding periods. In Table 5, as the holding period increases, the probabilities of
odd states also increase while those of even states decrease. This makes it possible to explain the
properties of moments, shown in Table 1: The presence of odd states accounts for the asymmetry
of the distribution (see Figure 1). A more asymmetric distribution with a larger skewness (longer
holding period) would thus have larger probabilities of odd states. On the other hand, even states,
which are symmetric, contribute to the fat tail and lead to a higher kurtosis. Therefore we find that
returns in longer holding periods have lower probabilities of even states and are less leptokurtic
with lower excess kurtosis.

Table 5. Probabilities of five low-lying eigenstates

τ P0 P1 P2 P3 P4

1 0.9842 0.0004 0.0145 0.0001 0.0008
5 0.9907 0.0018 0.0066 0.0005 0.0003
20 0.9856 0.0073 0.0047 0.0023 0.0001

The disparity across different holding periods has its origin in the parameter ω which character-
izes the harmonic oscillator. Since m is interpreted as the market capitalization (or firm-specific
characteristics in general), it is persistent for different holding periods of one stock index. There-
fore, in line with the evidence in Table 3, the parameter ω increases as the stock is held for longer
period. Since ω is the angular frequency measuring the rate of oscillations around the equilibrium,
we interpret ω as the speed of mean reversion of stock returns. During short holding periods when
investors aim to speculate in stocks, greater information disparity and the resulting bias lead to
price overreaction, thus retarding the price reversion process and leading to a lower speed of mean
reversion, and vice versa for long holding periods. On the other hand, a lower mean reversion speed
in stock returns results in a more volatile distribution (Cox et al. 1985). This helps to explain the
negative relationship between the holding period and stock return volatility, which keeps parallel
with Atkins and Dyl (1997).
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5. Conclusion

Considering that the market always draws back the stock return from short-run fluctuations to
the long-run equilibrium, we have proposed a model based on a quantum harmonic oscillator
and demonstrated empirical evidence with the FTSE All Share Index. It has been found that
our model based on a quantum harmonic oscillator outperforms the traditional stochastic process
models, leading to smaller fitting errors and better goodness of fit statistics. The incorporation of
market uncertainty through the properties of wave functions is one of the sources of such excellent
performance. The model shows that stock returns follow a mixed χ distribution, among which
the ground state is Gaussian and the excited states contribute to non-Gaussian features. We also
provide the economic rationale of physics concepts: While the eigenstates correspond to uncertainty
regimes, the difference in the eigenenergy between two states represents the barrier between the
two regimes.

One can think of extensions of our approach to various other problems. An example is to apply it
to international comparison, e.g., the U.S. vs China, which gives an insight on the difference between
the two markets. There exists 10% return limitation in the Chinese stock market, in which case the
infinite square well might serve as a more proper potential. Another extension involves application
to returns of different portfolios, e.g., large vs small, value vs growth, etc. Other than the stock
returns, it is also feasible to model the interest rate through the quantum approach and apply it
to the bond market. Further, our model can also be applied to risk management, e.g., computing
Value at Risk based on the PDF of the quantum harmonic oscillator and comparing it with that
from historical simulations or extreme-value theory.
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Appendix

The GBM is a stochastic process for stock price St governed by the following stochastic differential
equation:

dSt = µStdt+ σStdWt,

where µ is the drift, σ the volatility, and Wt a standard Wiener process. Then the continuously
compounded return x ≡ ln(Sτ/S0) during holding period τ follows the Gaussian distribution

x ∼ N
[(
µ− σ2

2

)
τ, σ2τ

]
.

In the Heston model the stochastic variance σ2
t follows a Cox, Ingersoll, and Ross process (Cox

et al. 1985), defined by

dSt = µStdt+ σtStdW1,t

dσ2
t = −γ(σ2

t − θ)dt+ κσtdW2,t

d〈W1,t,W2,t〉 = ρdt,

where θ is the mean reversion level for the variance, γ is the mean reversion speed for the variance,
κ is the variance noise, and ρ is the correlation coefficient between two Wiener processes W1,t and
W2,t.

When ρ = 0, the PDF of the detrended log-return x ≡ ln(Sτ/S0)−µτ takes the semi-closed form
(Drǎgulescu and Yakovenko 2002)

P (x) =

∫ +∞

−∞

dk

2π
eikx+F (k)

with

F (k) =
γ2θ

κ2
τ − 2γθ

κ2
ln

(
cosh

γΩτ

2
+
Ω2 + 1

2Ω
sinh

γΩτ

2

)
,

where the frequency is given by Ω ≡
√

1 + (kκ/γ)2.
We fit GBM through maximum likelihood estimation. For the Heston model, we estimate pa-

rameters (Θ) by minimizing the mean-square deviation (Drǎgulescu and Yakovenko 2002)

Φ(Θ) =
∑
rj ,τ

∣∣∣ln(P̂τ (rj))− ln(Pτ (rj ;Θ))
∣∣∣2

where rj ≡ Rj − µτ is the detrended return, Pτ (rj ;Θ) is the theoretical PDF for given parameters

Θ = (γ, θ, κ, µ, α), and P̂τ (rj) is the empirical density obtained via (i) partitioning the r-axis into
equally spaced bins (Scott 1979) and (ii) dividing the number of observations falling in each bin
by the bin size ∆r and the total number of observations.

Table 6. Parameter estimates of the Heston model

γ θ κ µ α

3.371×10−2 1.335×10−4 3.044×10−3 1.301×10−4 0.9718
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The results in Table 6 show that α = 2γθ/κ2 ≈ 1 and γτ � 1, which implies that the PDF of

the Heston model converges to an exponential distribution, P (x) ∝ exp
(
−|x|

√
2/θτ

)
(Silva et al.

2004).
We thus fit the Heston model with an exponential distribution by means of the maximum likeli-

hood estimation and present estimated parameters for the different holding periods in Table 3.
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